Quasisymmetric expansions of Schur-function plethysms

نویسندگان

  • Nicholas A. Loehr
  • Gregory S. Warrington
چکیده

Let sμ denote a Schur symmetric function and Qα a fundamental quasisymmetric function. Explicit combinatorial formulas are developed for the fundamental quasisymmetric expansions of the plethysms sμ[sν ] and sμ[Qα], as well as for related plethysms defined by inequality conditions. The key tools for obtaining these expansions are new standardization and reading word constructions for matrices. As one application, we use our expansions to give a new derivation of the (well-known) Schur expansion for h2[hn]. MSC: 05E05, 05E10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplication Rules for Schur and Quasisymmetric Schur Functions

An important problem in algebraic combinatorics is finding expansions of products of symmetric functions as sums of symmetric functions. Schur functions form a well-known basis for the ring of symmetric functions. The Littlewood-Richardson rule was introduced to expand the product of two Schur functions as a positive sum of Schur functions. Remmel and Whitney introduced an algorithmic way to fi...

متن کامل

From quasisymmetric expansions to Schur expansions via a modified inverse Kostka matrix

Every symmetric function f can be written uniquely as a linear combination of Schur functions, say f = ∑ λ xλsλ, and also as a linear combination of fundamental quasisymmetric functions, say f = ∑ α yαQα. For many choices of f arising in the theory of Macdonald polynomials and related areas, one knows the quasisymmetric coefficients yα and wishes to compute the Schur coefficients xλ. This paper...

متن کامل

Transition matrices for symmetric and quasisymmetric Hall-Littlewood polynomials

We introduce explicit combinatorial interpretations for the coefficients in some of the transition matrices relating to skew Hall-Littlewood polynomials Pλ/μ(x; t) and Hivert’s quasisymmetric Hall-Littlewood polynomials Gγ(x; t). More specifically, we provide the following: 1. Gγ-expansions of the Pλ, the monomial quasisymmetric functions, and Gessel’s fundamental quasisymmetric functions Fα, a...

متن کامل

Skew row-strict quasisymmetric Schur functions

Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict You...

متن کامل

Multiplicity Free Schur, Skew Schur, and Quasisymmetric Schur Functions

In this paper we classify all Schur functions and skew Schur functions that are multiplicity free when expanded in the basis of fundamental quasisymmetric functions, termed F -multiplicity free. Combinatorially, this is equivalent to classifying all skew shapes whose standard Young tableaux have distinct descent sets. We then generalize our setting, and classify all F -multiplicity free quasisy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010